Chào mừng quý vị đến với website của ...
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tài liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
tuyen tap he toa do Oxy tu 2002 de nay- DE BAI

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Cơ Sở Dạy Thêm Và Luyện Thi Bảo Ngọc (trang riêng)
Ngày gửi: 10h:26' 08-03-2016
Dung lượng: 333.5 KB
Số lượt tải: 1
Nguồn:
Người gửi: Cơ Sở Dạy Thêm Và Luyện Thi Bảo Ngọc (trang riêng)
Ngày gửi: 10h:26' 08-03-2016
Dung lượng: 333.5 KB
Số lượt tải: 1
Số lượt thích:
0 người
HÌNH TỌA ĐỘ OXY TRONG CÁC ĐỀ THI ĐẠI HỌC TỪ 2002 ĐẾN NAY
CÂU 8 KỂ TỪ NĂM 205
THPTQG 2015
Cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên cạnh BC; D là điểm đối xứng của B qua H; K là hình chiếu vuông góc của C trên đường thẳng AD. Giả sử H(-5; -5), K(9; -3) và trung điểm của cạnh AC thuộc đường thẳng x – y + 10 = 0. Tìm tọa độ điểm A.
ĐH A2014
Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên cạnh BC; D là điểm đối xứng của B qua H; K là hình chiếu vuông góc của C trên đường thẳng AD. Giả sử H(-5;-5), K(9;-3) và trung điểm của cạnh AC thuộc đường thẳng x-y+10 = 0. Tìm tọa độ điểm A
ĐH A2014
Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có điểm M là trung điểm của đoạn AB và N là điểm thuộc đoạn AC sao cho AN = 3NC. Viết phương trình đường thẳng CD biết rằng M(1;2) và N(2;-1).
ĐS: CD là : y + 2 = 0 hoặc 3x – 4y - 15 = 0
ĐH B2014
Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD.
Điểm M(-3;0) là trung điểm của cạnh AB, điểm H(0;-1) là hình chiếu vuông góc của B trên AD và điểm G(;3) là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B và D.
ĐS:
ĐH D2014
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có chân đường phân giác trong của góc A là điểm D (1; -1). Đường thẳng AB có phương trình 3x + 2y – 9 = 0, tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC có phương trình x + 2y – 7 = 0. Viết phương trình đường thẳng BC.
(ĐH A2013−CB)
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng
d : và . Gọi M là điểm đối xứng của B qua C, N là hình chiếu vuông góc của B
trên đường thẳng MD. Tìm tọa độ các điểm B và C, biết rằng N (5;-4).
ĐS :
(ĐH A2013−NC)
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng . Đường tròn (C) có bán kính R = cắt tại hai điểm A và B sao cho AB = . Tiếp tuyến của (C) tại A và B cắt nhau tại một điểm thuộc tia Oy. Viết phương trình đường tròn (C).
ĐS :
(ĐH B2013−CB)
Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có hai đường chéo vuông góc với nhau và AD = 3BC . Đường thẳng BD có phương trình x + 2y – 6 = 0 và tam giác ABD có trực tâm là H(-3 ; 2). Tìm tọa độ các đỉnh C và D
ĐS : hoặc
(ĐH B2013−NC)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có chân đường cao hạ từ A là H , chân đường phân giác trong của góc A là D(5 ; 3) và trung điểm của cạnh AB là M (0 ; 1). Tìm tọa độ đỉnh C .
ĐS :
(ĐH D2013−CB)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm là trung điểm của cạnh AB , điểm và điểm lần lượt là chân đường cao kẻ từ B và tâm đường tròn ngoại tiếp tam giác ABC . Tìm tọa độ điểm C .
ĐS :
(ĐH D2013−NC)
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) : và đường thẳng . Tam giác MNP có trực tâm trùng với tâm của (C) , các đỉnh N và P thuộc , đỉnh M và trung điểm của cạnh MN thuộc (C). Tìm tọa độ điểm P .
ĐS :
(ĐH A2012−CB)
Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm của cạnh BC, N là điểm trên cạnh CD sao cho CN = 2ND. Giả sử và đường thẳng AN có phương trình 2x – y–3=0.
Tìm tọa độ điểm A.
ĐS :
(ĐH A2012−NC)
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) : x2 + y2 = 8. Viết phương trình chính tắc elip (E), biết rằng (E) có
CÂU 8 KỂ TỪ NĂM 205
THPTQG 2015
Cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên cạnh BC; D là điểm đối xứng của B qua H; K là hình chiếu vuông góc của C trên đường thẳng AD. Giả sử H(-5; -5), K(9; -3) và trung điểm của cạnh AC thuộc đường thẳng x – y + 10 = 0. Tìm tọa độ điểm A.
ĐH A2014
Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên cạnh BC; D là điểm đối xứng của B qua H; K là hình chiếu vuông góc của C trên đường thẳng AD. Giả sử H(-5;-5), K(9;-3) và trung điểm của cạnh AC thuộc đường thẳng x-y+10 = 0. Tìm tọa độ điểm A
ĐH A2014
Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có điểm M là trung điểm của đoạn AB và N là điểm thuộc đoạn AC sao cho AN = 3NC. Viết phương trình đường thẳng CD biết rằng M(1;2) và N(2;-1).
ĐS: CD là : y + 2 = 0 hoặc 3x – 4y - 15 = 0
ĐH B2014
Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD.
Điểm M(-3;0) là trung điểm của cạnh AB, điểm H(0;-1) là hình chiếu vuông góc của B trên AD và điểm G(;3) là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B và D.
ĐS:
ĐH D2014
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có chân đường phân giác trong của góc A là điểm D (1; -1). Đường thẳng AB có phương trình 3x + 2y – 9 = 0, tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC có phương trình x + 2y – 7 = 0. Viết phương trình đường thẳng BC.
(ĐH A2013−CB)
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng
d : và . Gọi M là điểm đối xứng của B qua C, N là hình chiếu vuông góc của B
trên đường thẳng MD. Tìm tọa độ các điểm B và C, biết rằng N (5;-4).
ĐS :
(ĐH A2013−NC)
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng . Đường tròn (C) có bán kính R = cắt tại hai điểm A và B sao cho AB = . Tiếp tuyến của (C) tại A và B cắt nhau tại một điểm thuộc tia Oy. Viết phương trình đường tròn (C).
ĐS :
(ĐH B2013−CB)
Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD có hai đường chéo vuông góc với nhau và AD = 3BC . Đường thẳng BD có phương trình x + 2y – 6 = 0 và tam giác ABD có trực tâm là H(-3 ; 2). Tìm tọa độ các đỉnh C và D
ĐS : hoặc
(ĐH B2013−NC)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có chân đường cao hạ từ A là H , chân đường phân giác trong của góc A là D(5 ; 3) và trung điểm của cạnh AB là M (0 ; 1). Tìm tọa độ đỉnh C .
ĐS :
(ĐH D2013−CB)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm là trung điểm của cạnh AB , điểm và điểm lần lượt là chân đường cao kẻ từ B và tâm đường tròn ngoại tiếp tam giác ABC . Tìm tọa độ điểm C .
ĐS :
(ĐH D2013−NC)
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) : và đường thẳng . Tam giác MNP có trực tâm trùng với tâm của (C) , các đỉnh N và P thuộc , đỉnh M và trung điểm của cạnh MN thuộc (C). Tìm tọa độ điểm P .
ĐS :
(ĐH A2012−CB)
Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm của cạnh BC, N là điểm trên cạnh CD sao cho CN = 2ND. Giả sử và đường thẳng AN có phương trình 2x – y–3=0.
Tìm tọa độ điểm A.
ĐS :
(ĐH A2012−NC)
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) : x2 + y2 = 8. Viết phương trình chính tắc elip (E), biết rằng (E) có
 






Các ý kiến mới nhất